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0. Introduction 

The mapping class group 4, is defined to be the group of path components of the 

group of orientation-preserving diffeomorphisms of an oriented closed surface S, of 

genus y. 

Let r be a group of finite virtual cohomological dimension and 71 c r any subgroup 

of prime order p. There exists a maximum value m = m(n) such that 

lm((H*(T; Z) + H*(~T; Z/p)) C Z/p[u”]> C H*(7t; Z/p), 

where the map is the restriction map and u E H2(q Z/p) is a generator. Recall that 

the Yagita invariant p(T) of r with respect to the prime p is then defined to be the 

least common multiple of values 2m(n), where n ranges over all subgroups of order p 

of r (see [9, 7, 41). Notice that p(T) is defined to be 1 if r does not contain any 

subgroup of order p. 

The Yagita invariant p(T) generalizes the p-period of a group. As it is the case for 

the p-period, p(T) divides 2(p - 1 )pk, for some k 2 0. Especially, the invariant 2(r) 

is of the form 2k for some k L 0. The invariant p(T,) is calculated for an odd regular 

prime by Glover, Mislin and the author in [3, 41. For even genus 2(&) is obtained by 

the author in [8]. In this note, we will calculate 2(4,) in some interesting special cases. 

Our main result is stated as follows. 

Theorem 1. Assume that g = 122h-’ + 1 with 1 > 2”+’ - 1 un odd integer und k _ 2 0. 

Then, 2(G) is 22”+‘. 
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When k = 0, Theorem 1 is the main result in [8] which states that 2(G) is 4 if g 

is even. When k = 1, Theorem 1 says 2(&) is 8 if g > 3 is 3 mod(4). A direct 

observation that & contains the quaterion group of order 8 (or see [l]) and Theorem 2 

below in the case x = 1 imply that the invariant 2(G) is 4. Theorem 1 suggests a 

conjecture that the invariant 2(G) is 2r+2 if y = 12” + 1 with I odd and sufficiently 

large. As a complement of Theorem 1, we also prove 

Theorem 2. Assume that 9 = 2” + 1 bt’ith z > 0. Then, the Yugita invariunt 2(G) is 

either 2” or 2”+‘. 

Theorem 3. Assume thut g = 12’ + 1 with I un odd integer and a > 0. Then, the 

Yagita invariant 2(4,) is either 2”, 25+1 or 2r+2. 

There are two main techniques in this note different from previous approaches for 

calculating the Yagita invariant of mapping class groups. The one is that we employ 

Stiefel-Whitney classes instead of Chem classes to make a more precise upper bound 

of the invariant 2(G). The other one is that we study an elementary abelian 2-group 

action on the surface of genus y with a certain property to raise the lower bound of 

the invariant 2(G). 

The rest of this note is organized as follows. In Section 1, we provide an upper 

bound for 2(c,). In Section 2, we get a lower bound for 2(G) under the assumptions 

of Theorem 1. This lower bound agrees with the upper bound in Section 1 if g = 

12+’ + 1 (I > 2k+’ - 1 an odd number). Thus, Theorem 1 is proved in this section. 

In Section 3, we obtain a sharp upper bound for 2(G) in the case y = 2’ + 1 and 

finish the proof of Theorem 2. Theorem 3 follows by combining Proposition 1.3 and 

Lemma 3.3. 

1. An upper bound for 2(G) 

Let 

denote the homology representation by letting 4 act on HI (S,; R). The Stiefel-Whitney 

class wi(p) E H’(T,; Z/2) is defined via the flat [w2” bundle classified by the map 

Bp : K( r,, 1) + BG12J R). 

Let U(g) be a maximal compact subgroup of Q,,(R). It is well known that BSP~~,([W) 

is homotopy equivalent to BU(g); thus, 

H*(BQ72JNU2) = V’[d~,dz,...>4J 

(deg(di) = 2i, i > l), where the d, is exactly corresponding to the universal Chem 

class ci E H2’(BU(g); Z/2). These df’s are the reductions of some cohomology ele- 
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ments in H*(BSpZy( [w); Z) with integer coefficients since Chern classes c;‘s are defined 

in H*(BU(g); Z) with integer coefficients. Let i: Sp,([w) --f Cl,(R) be the natural in- 

clusion. Notice that a general relation i*(w2i) = d; implies that 

is a reduction of a cohomology element in H”(T,; Z). 

Assume that g = 12” + 1 with CY > 0 and 1 an odd integer. Let II = Zi2 c 4 be a 

subgroup. One may think of rr as a Z/2 action on S, associated with the Riemann 

Hurwitz equation 

2g-2=2(2h-2)+n, 

where h > 0 is the genus of the orbit space &/L/2 and n # 1 is the number of 

fixed points of the Z/2 action on S,. Let pn : n -+ [, denote the representation of the 

restriction of p to 71 c r,, and the Stiefel-Whitney class w;(p,) denote the restriction 

of w,(p) under pX. 

Lemma 1.1. ~2(~,-h)(h) # 0. 

Proof. Let po denote the trivial representation and p1 denote the unique irreducible 

representation of 212 = (t). Then one obtains easily 

in = 2(g - h)pl @ 2hpo> 

by combining the Lefschetz formula Z’r(p,(t)) =2 - n and the Riemann-Hurwitz for- 

mula 2g - 2 = 2(2h - 2)+ n. Thus, the total Stiefel-Whitney class w(p,) = (1 +.u?)“-” 

implies that the Stiefel-Whitney class WZ(~,_-~)(P~) # 0 in H’@“‘(n; Z/2). 0 

A similar argument as in Section 4 of [4] implies the following lemma which is 

similar to Proposition 4.3 in [4] there stated for p an odd prime. 

Lemma 1.2. Let g > 2 und rc c 4 be u subgroup qf‘ order 2, tcith the ussociuted 

Riemann-Hurwitz Jbrmulu 2g - 2 = 2(2h - 2) f n. Then there exists a cohomolo~~_~ 

element e E H6(~-h)-2n(~q; Z) wlhose restriction to H6(~-h)-2”(~; Z) is nontrivial. 

Combining the two types of cohomology elements in Lemmas 1.1 and I .2 above 

together, we give a general upper bound of the invariant 2(G). 

Proposition 1.3. Assume g = 12’ + 1 with I odd und x 2 0. Then the invcrriunt 2(G) 

divides 2x+2. In purticular, if g is even, then 2(G) divides 4. 

Proof. For every TC C 4 of order 2, we need to find a cohomology element 

e E Hl”“j(n)(&; Z) 

(p(r) 5 3 + 2, j(n) odd) so that the restriction of e to H2’i”‘j(n)(n; Z) is nontrivial. 
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Case 1: 2g - 2 + n $ 0 mod(2”+4). It is easy to verify that 2(g - h) = (29 - 2 + n)/2 $ 

0mod(21+3) because of h = (2g + 2 - n)/4. Thus, we take e E H2”“j(‘)(~; Z) as a lift 

of wqq-h)(p) E iFj(n)(&; Z/2). 

Case 2: 2g - 2 + n = 0mod(2”f4). Notice that 6(g - h) - 2n = 1/2(6g - 6 - n), We 

claim that 6g - 6 - 12 $ Omod(21+4). Then, we take e to be the cohomology element 

given in Lemma 1.2. In fact, if both 2g - 2 + n and 6g - 6 - n are 0mod(2x+4), then 

8g - 8 F Omod(2n+4), i.e., g = 1 mod(2”+‘). This contradicts our assumption. Cl 

2. A Iower bound for 2(G) 

In this section, we assume g = 1221-l + 1 (I > 2k+’ - 1 odd and z 1 0). The 

case g = 2” + 1 will be treated in Section 3. If there is a finite group G acting 

on S, one may consider this action as a subgroup G c 4. The idea of this section 

is to construct an elementary abelian 2-group E = (al,. . . , a2A) of rank 2k acting on 

S, so that, for any ai,a,, 1 2 i < j 5 2k, there is an element n,,j E q satisfying 

n;,jainY’ = aj, ni,jajny’ = aj and n,.jakn,yj’ = ak for k # i, j. We abuse the notation E 

here. Then, we prove that the invariant 2(NI;,(E)) (the normalizer of E) is a multiple 

of 22”+1, so is the invariant 2(G). 

Proposition 2.1. Assume g = 122’ -’ + 1 (I 2 2ki’ - 1 odd, and k 2 1). There is 

an elementary abelian 2-group E = (al,al,. ..,a2h) of rank 2k acting on S, so that, 

fOranyai,aj, 1 <i<j<2 k, there is an element ni,j in c, satisfying ni,jaini/ = 

aj, nqajnrr,’ = ai and ni,jakn,T] = ak fbr k # i, j. 

Proof. We construct a surjective map 

p: T-c,(S(~+~)/~ - {x1,x2}) --tE = (ao,al,...,+) 

with p(bo) = ao, p(bl) = al,...,p(b2i) = azl,p(bi) = 1 for 2k 5 i 5 (It 1)/2 and 

I = 1 for 0 5 i < (t + 1)/2, and P(x~) = F(x~) = goal “‘Q, where bi, ci and xj 

for 0 < i < x and 1 < j 5 2 consist of a set of generators of rri(S([+i)/~ - {x1,x2}). 

Note that (I + 1)/2 2 2k by assumption. This surjection p gives rise to a covering 

map 

with two branch points with the deck transformation E of S, since the Riemann- 

Hurwitz formula 

2g-2= 122L =221(2h-2)+22A(1 - $r 

holds when taking h = (I+ 1)/2 and n = 2. Consider an automorphism fli,j of E defined 

by Pi,j(ai) = aj, pi,,(aj) = ai and Pi,j(ak) = ak for k # i,j. Notice that the map 
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p factors through the homology and there is a surjective map 

0 : ff1($+1);.2 - {xI,xz};~) --+ E 

with ,LI = p?r, where z is the abelianization map from rtt(S(l+t);.z - {x~,Q}) to 

HI(S(I+I)~Z - {x1,x2}; Z). We use again bi, c, and XI as elements in the basis of 

Ht(.Stl+lI/2 - {xt,_q}; Z). We may also assume that bi, c, are symplectic. Then, the 

(I + 2) x (I + 2) matrix 

X = (il (E;)-’ 8) 

gives rise to an automorphism yi,j of Ht(S (,+,);2 - {x1,x2}; Z) which preserves the 

symplectic form such that /Irl,j = bi,jfi, where E;,, is the (1 + 1)/2 x (1 + 1)/2 matrix 

which exchanges ith and jth rows of the identity matrix. Such yi,j E Aut (H~(S(~+~JQ - 

{xt,xz}; Z)) can be realized by a homeomorphism J;,j of Scl+t)/2 which fixes points XI 

and x2 since the natural map from [, to the symplectic group Sp(2g, Z) is surjective. 

So, there is a homeomorphism ni,J of S, which lifts fi,j in the sense pfi,.i = n;,/p by 

a classical result of MacLachlan and Harvey (see [5]). Recall that the map p is the 

branched covering map from S, to Sc,+t)/~ with two branch points. This homeomor- 

phism ni,j is the one we need in this proposition. 0 

Lemma 2.2. Let r be a group of finite vcd and E c r an elementary ubeliun 

2-subgroup of rank 2k (k > 0). Assume that a basis of E is (a1,a2,. . .a2h). For 

any a,,a, (1 < i < j 5 2k), if there is an element nj.J E r such that n;,ja;n,’ = a,, 

ni,jajny’ = a, and ni,ja,ncj’ = a, for 1 < m < 2k and m # i, j, then the Yugita 

invariant 2(N(E)) is a multiple of 22”+‘. So is 2(r). 

Proof. We show that the diagonal embedding 

A:Z/2+EcN(E) 

induces a restriction map 

A* : H*(N(E); Z) + H*(Z/2; Z) 

mapping into Z[U.~~’ ]/2~“‘, where w E H2( Z/2; Z) is a generator. Consider the diagonal 

restriction map 

p* : H*(E; Z) --+ H*(Z/2; Z). 

Note that it is well known that 

H*(E; Z) = Z[w,, . . . , w2~]/2(w1,. . . , w2” ), 

where each wi of degree 2 and (WI,. . . , w2i ) denoting the ideal generated by these 

elements. All elementary symmetric functions in the variables WI,. . , wp map via 
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p* to 0 so that the image of d * is contained in the subalgebra generated by the 

image of n Wi, which is IV*“. This implies that 2(N(E)) is a multiple of 2*“+‘. Thus, 

2(r) is a multiple of 221+‘. 0 

The combination of Proposition 2.1 and Lemma 2.2 gives 

Corollary 2.3. Assume that g = 122h-’ + I with I > 2k+’ - 1 odd and k 2 0. Then 

the Yngitu inouriunt 2( 5) is u multiple of’ 2*“+‘. 

Proposition 1.3, Corollary 2.3 and the result in the case k = 0 given in [8] together 

imply Theorem 1 in introduction. 

3. Yagita invariant 2(rtz+1) 

We provide a sharp upper bound of the invariant 2( &) in the case g = 2” + 1. Let rt 

denote a cyclic action of order 2 on S, with the associated Riemann-Hurwitz formula 

2g - 2 = 2(2h - 2) + n, 

where h is the genus of the orbit space and the n is the number of fixed points of the 

7c action. 

Lemma 3.1. IJ’g = 2’ + 1 lcyith x > 0, then 2(g - h) $ 0mod(2’f2). 

Proof. Observe that h = (29 + 2 - n)/4. Thus, 

0 < n < 2g + 2 = 2”+’ + 4. 

Then, one obtains that 2(y-h) = (29-2+n)/2 $ 0mod(2”f2). Otherwise, 2g-2+n = 

2”+’ + n z Omod(2”+3) implies that 

II 2 2x+3 _ 2~+’ > 2x+’ + 4, q 

The combination of Lemmas 1.1 and 3.1 gives a cohomology element 

eEH 2”i”‘i(~)(~q; z) 

such that Resj,(e) # 0 for P(E) 5 x + 1. So we obtain 

Lemma 3.2. Let g = 2” + 1 with x > 0. Then, the invariant 2(c,) divides 2’+‘. 

Assume that g = 12” + 1 with I any odd integer and x > 0. It is straightforward 

to find a cyclic subgroup H of order 2 ‘+’ in c, so that the index of [N(H): C(H)] 

is 2”. Such H could be realized by constructing a cyclic action of order 2’+’ on S, 

with 2 singular orbits and the quotient space a surface St,+’ )!2 of genus (1-t 1)/Z. The 

associated Riemann-Hurwitz equation is 

29 - 2 = 2”+‘(2h - 2) + 2’+‘( 1 - 92. 
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The cyclic 2 ‘+’ fold covering 

p : q/ - (2pts) + s(1+1)!.2 - {2P@} 

is given by a surjective map 

.f : ~l(~l;‘2(/+1) - (2pfs)) = (~,~JlJ2 I [ablxln = 1) + H = (Y) 

suchthatf(a~)=y,J‘(a~)=1for2~i~~(I+1),,f(bj)=1for1~i~~(I+l) 

and .f(xl) = J’(Q) = y2’. The deck transformation group associated to p is denoted 

by H. One can see that the index of [N(H): C(H)] is 2” from the fixed-point data 

(see [6]). This implies that the Yagita invariant 2(N(H)) is a multiple of 2”. Namely, 

we have 

Lemma 3.3. Lrt .L/ = 12” + 1 with 1 odd and c( > 0. Then, the incuriunt 2(1;,) is (I 

multiple of 2”. 

Theorem 2 in the introduction follows from Lemmas 3.2 and 3.3, and Theorem 3 in 

the introduction follows from Proposition 1.3 and Lemma 3.3. 
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