Yagita invariant of mapping class groups at the prime 2

Yining Xia
Northern Illinois University, De Kalb, IL 60115, USA

Communicated by J.D. Stasheff; received 3 April 1995; received in revised form 7 May 1996

Abstract

We compute the Yagita invariant of mapping class groups at the prime number 2. (C) 1998 Published by Elsevier Science B.V. All rights reserved.

AMS Classification: 57R 20; 20F38; 20J10

0. Introduction

The mapping class group Γ_{g} is defined to be the group of path components of the group of orientation-preserving diffeomorphisms of an oriented closed surface S_{g} of genus g.

Let Γ be a group of finite virtual cohomological dimension and $\pi \subset \Gamma$ any subgroup of prime order p. There exists a maximum value $m=m(\pi)$ such that

$$
\operatorname{Im}\left(\left(H^{*}(\Gamma ; \mathbb{Z}) \rightarrow H^{*}(\pi ; \mathbb{Z} / p)\right) \subset \mathbb{Z} / p\left[u^{m}\right]\right) \subset H^{*}(\pi ; \mathbb{Z} / p)
$$

where the map is the restriction map and $u \in H^{2}(\pi ; \mathbb{Z} / p)$ is a generator. Recall that the Yagita invariant $p(\Gamma)$ of Γ with respect to the prime p is then defined to be the least common multiple of values $2 m(\pi)$, where π ranges over all subgroups of order p of Γ (see $[9,7,4]$). Notice that $p(\Gamma)$ is defined to be 1 if Γ does not contain any subgroup of order p.

The Yagita invariant $p(\Gamma)$ generalizes the p-period of a group. As it is the case for the p-period, $p(\Gamma)$ divides $2(p-1) p^{k}$, for some $k \geq 0$. Especially, the invariant $2(\Gamma)$ is of the form 2^{k} for some $k \geq 0$. The invariant $p\left(\Gamma_{g}\right)$ is calculated for an odd regular prime by Glover, Mislin and the author in [3, 4]. For even genus $2\left(\Gamma_{2 h}\right)$ is obtained by the author in [8]. In this note, we will calculate $2\left(\Gamma_{g}\right)$ in some interesting special cases.

Our main result is stated as follows.
Theorem 1. Assume that $g=l 2^{2^{k}-1}+1$ with $l \geq 2^{k+1}-1$ an odd integer and $k \geq 0$. Then, $2\left(\Gamma_{g}\right)$ is $2^{2^{k}+1}$.

When $k=0$, Theorem 1 is the main result in [8] which states that $2\left(\Gamma_{g}\right)$ is 4 if g is even. When $k=1$, Theorem 1 says $2\left(\Gamma_{g}\right)$ is 8 if $g>3$ is $3 \bmod (4)$. A direct observation that Γ_{3} contains the quaterion group of order 8 (or see [1]) and Theorem 2 below in the case $\alpha=1$ imply that the invariant $2\left(\Gamma_{3}\right)$ is 4 . Theorem 1 suggests a conjecture that the invariant $2\left(\Gamma_{g}\right)$ is 2^{x+2} if $g=12^{\alpha}+1$ with l odd and sufficiently large. As a complement of Theorem 1, we also prove

Theorem 2. Assume that $g=2^{x}+1$ with $x>0$. Then, the Yagita invariant $2\left(\Gamma_{g}\right)$ is either 2^{x} or 2^{x+1}.

Theorem 3. Assume that $g=12^{\alpha}+1$ with l an odd integer and $\alpha \geq 0$. Then, the Yagita invariant $2\left(\Gamma_{y}\right)$ is either $2^{x}, 2^{x+1}$ or 2^{x+2}.

There are two main techniques in this note different from previous approaches for calculating the Yagita invariant of mapping class groups. The one is that we employ Stiefel-Whitney classes instead of Chern classes to make a more precise upper bound of the invariant $2\left(\Gamma_{g}\right)$. The other one is that we study an elementary abelian 2 -group action on the surface of genus g with a certain property to raise the lower bound of the invariant $2\left(\Gamma_{g}\right)$.

The rest of this note is organized as follows. In Section 1, we provide an upper bound for $2\left(\Gamma_{g}\right)$. In Section 2, we get a lower bound for $2\left(\Gamma_{g}\right)$ under the assumptions of Theorem 1. This lower bound agrees with the upper bound in Section 1 if $g=$ $l 2^{2^{k}-1}+1\left(l \geq 2^{k+1}-1\right.$ an odd number $)$. Thus, Theorem 1 is proved in this section. In Section 3, we obtain a sharp upper bound for $2\left(\Gamma_{g}\right)$ in the case $g=2^{\alpha}+1$ and finish the proof of Theorem 2. Theorem 3 follows by combining Proposition 1.3 and Lemma 3.3.

1. An upper bound for $\mathbf{2}\left(\Gamma_{g}\right)$

Let

$$
\rho: \Gamma_{g} \rightarrow S p_{2 g}(\mathbb{R}) \rightarrow G l_{2 g}(\mathbb{R})
$$

denote the homology representation by letting Γ_{g} act on $H_{1}\left(S_{g} ; \mathbb{R}\right)$. The Stiefel-Whitney class $w_{i}(\rho) \in H^{i}\left(\Gamma_{g} ; \mathbb{Z} / 2\right)$ is defined via the flat $\mathbb{R}^{2 \varphi}$ bundle classified by the map

$$
B \rho: K\left(\Gamma_{g}, 1\right) \rightarrow B G l_{2 g}(\mathbb{R}) .
$$

Let $U(g)$ be a maximal compact subgroup of $S p_{2 g}(\mathbb{R})$. It is well known that $B S p_{2 g}(\mathbb{R})$ is homotopy equivalent to $B U(g)$; thus,

$$
H^{*}\left(B S p_{2 g}(\mathbb{R}) ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[d_{1}, d_{2}, \ldots, d_{q}\right]
$$

$\left(\operatorname{deg}\left(d_{i}\right)=2 i, i \geq 1\right)$, where the d_{i} is exactly corresponding to the universal Chern class $c_{i} \in H^{2 i}(B U(g) ; \mathbb{Z} / 2)$. These d_{i} 's are the reductions of some cohomology ele-
ments in $H^{*}\left(B S p_{2 q}(\mathbb{R}) ; \mathbb{Z}\right)$ with integer coefficients since Chern classes c_{i} 's are defined in $H^{*}(B U(g) ; \mathbb{Z})$ with integer coefficients. Let $i: S p_{n}(\mathbb{R}) \rightarrow G l_{n}(\mathbb{R})$ be the natural inclusion. Notice that a general relation $i^{*}\left(w_{2 i}\right)=d_{i}$ implies that

$$
w_{2 i}(\rho) \in H^{2 i}\left(\Gamma_{g} ; \mathbb{Z} / 2\right)
$$

is a reduction of a cohomology element in $H^{2 i}\left(\Gamma_{g} ; \mathbb{Z}\right)$.
Assume that $g=l 2^{\alpha}+1$ with $\alpha \geq 0$ and l an odd integer. Let $\pi=\mathbb{Z} / 2 \subset \Gamma_{y}$ be a subgroup. One may think of π as a $\mathbb{Z} / 2$ action on S_{y} associated with the RiemannHurwitz equation

$$
2 g-2=2(2 h-2)+n
$$

where $h \geq 0$ is the genus of the orbit space $S_{y} / \mathbb{Z} / 2$ and $n \neq 1$ is the number of fixed points of the $\mathbb{Z} / 2$ action on S_{g}. Let $\rho_{\pi}: \pi \rightarrow \Gamma_{g}$ denote the representation of the restriction of ρ to $\pi \subset \Gamma_{g}$, and the Stiefel-Whitney class $w_{i}\left(\rho_{\pi}\right)$ denote the restriction of $w_{i}(\rho)$ under ρ_{π}.

Lemma 1.1. $w_{2(g-h)}\left(\rho_{\pi}\right) \neq 0$.
Proof. Let ρ_{0} denote the trivial representation and ρ_{1} denote the unique irreducible representation of $\mathbb{Z} / 2=\langle t\rangle$. Then one obtains easily

$$
\rho_{\pi}-2(g-h) \rho_{1} \oplus 2 h \rho_{0}
$$

by combining the Lefschetz formula $\operatorname{Tr}\left(\rho_{\pi}(t)\right)=2-n$ and the Riemann-Hurwitz formula $2 g-2=2(2 h-2)+n$. Thus, the total Sticfel-Whitney class $w\left(\rho_{\pi}\right)=\left(1+x^{2}\right)^{g-h}$ implies that the Stiefel-Whitney class $w_{2(g-h)}\left(\rho_{\pi}\right) \neq 0$ in $H^{2(g-h)}(\pi ; \mathbb{Z} / 2)$.

A similar argument as in Section 4 of [4] implies the following lemma which is similar to Proposition 4.3 in [4] there stated for p an odd prime.

Lemma 1.2. Let $g>2$ and $\pi \subset \Gamma_{g}$ be a subgroup of order 2 , with the associated Riemann-Hurwitz formula $2 g-2=2(2 h-2)+n$. Then there exists a cohomology element $e \in H^{6(g-h)-2 n}\left(\Gamma_{g} ; \mathbb{Z}\right)$ whose restriction to $H^{6(4-h)-2 n}(\pi ; \mathbb{Z})$ is nontrivial.

Combining the two types of cohomology elements in Lemmas 1.1 and 1.2 above together, we give a general upper bound of the invariant $2\left(\Gamma_{g}\right)$.

Proposition 1.3. Assume $g=l 2^{\alpha}+1$ with l odd and $\alpha \geq 0$. Then the invariant $2\left(\Gamma_{g}\right)$ divides 2^{x+2}. In particular, if g is even, then $2\left(\Gamma_{g}\right)$ divides 4 .

Proof. For every $\pi \subset \Gamma_{y}$ of order 2 , we need to find a cohomology element

$$
e \in H^{2^{\beta_{i x} \pi} j(\pi)}\left(\Gamma_{y} ; \mathbb{Z}\right)
$$

$(\beta(\pi) \leq \alpha+2, j(\pi)$ odd $)$ so that the restriction of e to $H^{\left.2^{(n \pi}\right) j(\pi)}(\pi ; \mathbb{Z})$ is nontrivial.

Case 1: $2 g-2+n \not \equiv 0 \bmod \left(2^{\alpha+4}\right)$. It is easy to verify that $2(g-h)=(2 g-2+n) / 2 \not \equiv$ $0 \bmod \left(2^{\alpha+3}\right)$ because of $h=(2 g+2-n) / 4$. Thus, we take $e \in H^{\left.p^{\mu+\pi}\right)}(\pi)\left(\Gamma_{g} ; \mathbb{Z}\right)$ as a lift of $w_{2(g-h)}(\rho) \in H^{\left.2^{/ h \pi}\right) j(\pi)}\left(\Gamma_{g} ; \mathbb{Z} / 2\right)$.
Case 2: $2 g-2+n \equiv 0 \bmod \left(2^{\alpha+4}\right)$. Notice that $6(g-h)-2 n=1 / 2(6 g-6-n)$. We claim that $6 g-6-n \not \equiv 0 \bmod \left(2^{x+4}\right)$. Then, we take e to be the cohomology element given in Lemma 1.2. In fact, if both $2 g-2+n$ and $6 g-6-n$ are $0 \bmod \left(2^{x+4}\right)$, then $8 g-8 \equiv 0 \bmod \left(2^{\alpha+4}\right)$, i.e., $g \equiv 1 \bmod \left(2^{\alpha+1}\right)$. This contradicts our assumption.

2. A lower bound for $2\left(\Gamma_{g}\right)$

In this section, we assume $g=l 2^{2^{k}-1}+1\left(l \geq 2^{k+1}-1\right.$ odd and $\left.\alpha \geq 0\right)$. The case $g=2^{\alpha}+1$ will be treated in Section 3. If there is a finite group G acting on S_{y} one may consider this action as a subgroup $G \subset \Gamma_{g}$. The idea of this section is to construct an elementary abelian 2-group $E=\left\langle a_{1}, \ldots, a_{2^{k}}\right\rangle$ of rank 2^{k} acting on S_{g} so that, for any $a_{i}, a_{j}, 1 \leq i<j \leq 2^{k}$, there is an element $n_{i, j} \in \Gamma_{g}$ satisfying $n_{i, j} a_{i} n_{i, j}^{-1}=a_{j}, n_{i, j} a_{j} n_{i, j}^{-1}=a_{i}$ and $n_{i, j} a_{k} n_{i, j}^{-1}=a_{k}$ for $k \neq i, j$. We abuse the notation E here. Then, we prove that the invariant $2\left(N_{\Gamma_{4}}(E)\right)$ (the normalizer of E) is a multiple of $2^{2^{k}+1}$, so is the invariant $2\left(\Gamma_{g}\right)$.

Proposition 2.1. Assume $g=l 2^{2^{k}-1}+1\left(l \geq 2^{k+1}-1\right.$ odd, and $\left.k \geq 1\right)$. There is an elementary abelian 2-group $E=\left\langle a_{1}, a_{2}, \ldots, a_{2^{k}}\right\rangle$ of rank 2^{k} acting on S_{g} so that, for any $a_{i}, a_{j}, 1 \leq i<j \leq 2^{k}$, there is an element $n_{i, j}$ in Γ_{g} satisfying $n_{i, j} a_{i} n_{i, j}^{-1}=$ $a_{j}, n_{i, j} a_{j} n_{i, j}^{-1}=a_{i}$ and $n_{i, j} a_{k} n_{i, j}^{-1}=a_{k}$ for $k \neq i, j$.

Proof. We construct a surjective map

$$
\mu: \pi_{1}\left(S_{(l+1) / 2}-\left\{x_{1}, x_{2}\right\}\right) \rightarrow E=\left\langle a_{0}, a_{1}, \ldots, a_{2^{k}}\right\rangle
$$

with $\mu\left(b_{0}\right)=a_{0}, \mu\left(b_{1}\right)=a_{1}, \ldots, \mu\left(b_{2^{k}}\right)=a_{2^{k}}, \mu\left(b_{i}\right)=1$ for $2^{k} \leq i \leq(l+1) / 2$ and $\mu\left(c_{i}\right)=1$ for $0 \leq i \leq(l+1) / 2$, and $\mu\left(x_{1}\right)=\mu\left(x_{2}\right)=a_{0} a_{1} \cdots a_{2^{k}}$, where b_{i}, c_{i} and x_{j} for $0 \leq i \leq \alpha$ and $1 \leq j \leq 2$ consist of a set of generators of $\pi_{1}\left(S_{(l+1) / 2}-\left\{x_{1}, x_{2}\right\}\right)$. Note that $(l+1) / 2 \geq 2^{k}$ by assumption. This surjection μ gives rise to a covering map

$$
p: S_{g} \rightarrow S_{(l+1) / 2}
$$

with two branch points with the deck transformation E of S_{g} since the RiemannHurwitz formula

$$
2 g-2=l 2^{2^{k}}=2^{2^{k}}(2 h-2)+2^{2^{k}}\left(1-\frac{1}{2}\right) n
$$

holds when taking $h=(l+1) / 2$ and $n=2$. Consider an automorphism $\beta_{i, j}$ of E defined by $\beta_{i, j}\left(a_{i}\right)=a_{j}, \beta_{i, j}\left(a_{j}\right)=a_{i}$ and $\beta_{i, j}\left(a_{k}\right)=a_{k}$ for $k \neq i, j$. Notice that the map
μ factors through the homology and there is a surjective map

$$
\bar{\mu}: H_{1}\left(S_{(l+1) / 2}-\left\{x_{1}, x_{2}\right\} ; \mathbb{Z}\right) \rightarrow E
$$

with $\mu=\bar{\mu} \pi$, where π is the abelianization map from $\pi_{1}\left(S_{(l+1) / 2}-\left\{x_{1}, x_{2}\right\}\right)$ to $H_{1}\left(S_{(l+1) / 2}-\left\{x_{1}, x_{2}\right\} ; \mathbb{Z}\right)$. We use again b_{i}, c_{i} and x_{1} as elements in the basis of $H_{1}\left(S_{(l+1) / 2}-\left\{x_{1}, x_{2}\right\} ; \mathbb{Z}\right)$. We may also assume that b_{i}, c_{i} are symplectic. Then, the $(l+2) \times(l+2)$ matrix

$$
X=\left(\begin{array}{ccc}
E_{i, j} & 0 & 0 \\
0 & \left(E_{i, j}^{T}\right)^{-1} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

gives rise to an automorphism $\gamma_{i, j}$ of $H_{1}\left(S_{(l+1) / 2}-\left\{x_{1}, x_{2}\right\} ; \mathbb{Z}\right)$ which preserves the symplectic form such that $\bar{\mu} \gamma_{i, j}=\beta_{i, j} \bar{\mu}$, where $E_{i, j}$ is the $(l+1) / 2 \times(l+1) / 2$ matrix which exchanges i th and j th rows of the identity matrix. Such $\gamma_{i, j} \in \operatorname{Aut}\left(H_{1}\left(S_{(l+1) / 2}-\right.\right.$ $\left.\left\{x_{1}, x_{2}\right\} ; \mathbb{Z}\right)$) can be realized by a homeomorphism $f_{i, j}$ of $S_{(l+1) / 2}$ which fixes points x_{1} and x_{2} since the natural map from Γ_{g} to the symplectic group $S p(2 g, \mathbb{Z})$ is surjective. So, there is a homeomorphism $n_{i, j}$ of S_{g} which lifts $f_{i, j}$ in the sense $p f_{i, j}=n_{i, j} p$ by a classical result of MacLachlan and Harvey (see [5]). Recall that the map p is the branched covering map from S_{g} to $S_{(1+1) / 2}$ with two branch points. This homeomorphism $n_{i, j}$ is the one we need in this proposition.

Lemma 2.2. Let Γ be a group of finite vcd and $E \subset \Gamma$ an elementary abelian 2-subgroup of rank $2^{k}(k>0)$. Assume that a basis of E is $\left\langle a_{1}, a_{2}, \ldots a_{2^{k}}\right\rangle$. For any $a_{i}, a_{j}\left(1 \leq i<j \leq 2^{k}\right)$, if there is an element $n_{i, j} \subset \Gamma$ such that $n_{i, j} a_{i} n_{i, j}^{-1}=a_{j}$, $n_{i, j} a_{j} n_{i, j}^{-1}=a_{i}$ and $n_{i, j} a_{m} n_{i, j}^{-1}=a_{m}$ for $1 \leq m \leq 2^{k}$ and $m \neq i, j$, then the Yagita invariant $2(N(F))$ is a multiple of $2^{2^{k}+1}$. So is $2(\Gamma)$.

Proof. We show that the diagonal embedding

$$
\Delta: \mathbb{Z} / 2 \rightarrow E \subset N(E)
$$

induces a restriction map

$$
\Delta^{*}: H^{*}(N(E) ; \mathbb{Z}) \rightarrow H^{*}(\mathbb{Z} / 2 ; \mathbb{Z})
$$

mapping into $\mathbb{Z}\left[w^{2^{2^{k}}}\right] / 2 w^{2^{2^{k}}}$, where $w \in H^{2}(\mathbb{Z} / 2 ; \mathbb{Z})$ is a generator. Consider the diagonal restriction map

$$
\rho^{*}: H^{*}(E ; \mathbb{Z}) \rightarrow H^{*}(\mathbb{Z} / 2 ; \mathbb{Z})
$$

Note that it is well known that

$$
H^{*}(E ; \mathbb{Z})=\mathbb{Z}\left[w_{1}, \ldots, w_{2^{k}}\right] / 2\left(w_{1}, \ldots, w_{2^{k}}\right)
$$

where each w_{i} of degree 2 and ($w_{1}, \ldots, w_{2^{k}}$) denoting the ideal generated by these elements. All elementary symmetric functions in the variables $w_{1}, \ldots, w_{2^{k}}$ map via
ρ^{*} to 0 so that the image of Δ^{*} is contained in the subalgebra generated by the image of $\prod w_{i}$, which is $w^{2^{k}}$. This implies that $2(N(E))$ is a multiple of $2^{2^{k}+1}$. Thus, $2(\Gamma)$ is a multiple of $2^{2^{k}+1}$.

The combination of Proposition 2.1 and Lemma 2.2 gives
Corollary 2.3. Assume that $g=l 2^{2^{k}-1}+1$ with $l \geq 2^{k+1}-1$ odd and $k \geq 0$. Then the Yagita invariant $2\left(\Gamma_{g}\right)$ is a multiple of $2^{2^{k}+1}$.

Proposition 1.3, Corollary 2.3 and the result in the case $k=0$ given in [8] together imply Theorem 1 in introduction.

3. Yagita invariant $2\left(\Gamma_{2^{x}+1}\right)$

We provide a sharp upper bound of the invariant $2\left(\Gamma_{g}\right)$ in the case $g=2^{x}+1$. Let π denote a cyclic action of order 2 on S_{g} with the associated Riemann-Hurwitz formula

$$
2 g-2=2(2 h-2)+n
$$

where h is the genus of the orbit space and the n is the number of fixed points of the π action.

Lemma 3.1. If $g=2^{x}+1$ with $x>0$, then $2(g-h) \not \equiv 0 \bmod \left(2^{x+2}\right)$.
Proof. Observe that $h=(2 g+2-n) / 4$. Thus,

$$
0 \leq n \leq 2 g+2=2^{x+1}+4
$$

Then, one obtains that $2(g-h)=(2 g-2+n) / 2 \not \equiv 0 \bmod \left(2^{x+2}\right)$. Otherwise, $2 g-2+n=$ $2^{\alpha+1}+n \equiv 0 \bmod \left(2^{\alpha+3}\right)$ implies that

$$
n \geq 2^{x+3}-2^{x+1}>2^{x+1}+4
$$

The combination of Lemmas 1.1 and 3.1 gives a cohomology element

$$
e \in H^{2^{\mu_{i}(\pi)} j(\pi)}\left(\Gamma_{g} ; \mathbb{Z}\right)
$$

such that $\left.\operatorname{Res}\right|_{\pi}(e) \neq 0$ for $\beta(\pi)<x+1$. So we obtain
Lemma 3.2. Let $g=2^{\alpha}+1$ with $\alpha>0$. Then, the invariant $2\left(\Gamma_{g}\right)$ divides $2^{\alpha+1}$.
Assume that $g=12^{\alpha}+1$ with l any odd integer and $\alpha \geq 0$. It is straightforward to find a cyclic subgroup H of order 2^{x+1} in Γ_{y} so that the index of [$N(H): C(H)$] is 2^{x}. Such H could be realized by constructing a cyclic action of order 2^{x+1} on S_{g} with 2 singular orbits and the quotient space a surface $S_{(l+1) / 2}$ of genus $(l+1) / 2$. The associated Ricmann-Hurwitz equation is

$$
2 g-2=2^{x+1}(2 h-2)+2^{\alpha+1}\left(1-\frac{1}{2}\right) 2
$$

The cyclic 2^{x+1} fold covering

$$
p: S_{g}-\{2 p t s\} \rightarrow S_{(l+1) / 2}-\{2 p t s\}
$$

is given by a surjective map

$$
f: \pi_{1}\left(S_{1 / 2(l+1)}-\{2 p t s\}\right)=\left\langle a, b, x_{1}, x_{2} \mid[a b] x_{1} x_{2}=1\right\rangle \rightarrow H=\langle y\rangle
$$

such that $f\left(a_{1}\right)=y, f\left(a_{i}\right)=1$ for $2 \leq i \leq \frac{1}{2}(l+1), f\left(b_{i}\right)=1$ for $1 \leq i \leq \frac{1}{2}(l+1)$ and $f\left(x_{1}\right)=f\left(x_{2}\right)=y^{2^{2}}$. The deck transformation group associated to p is denoted by H. One can see that the index of $[N(H): C(H)]$ is 2^{α} from the fixed-point data (see [6]). This implies that the Yagita invariant $2\left(N(H)\right.$) is a multiple of 2^{x}. Namely, we have

Lemma 3.3. Let $g=l 2^{\alpha}+1$ with l odd and $\alpha \geq 0$. Then, the invariant $2\left(\Gamma_{g}\right)$ is a multiple of 2^{x}.

Theorem 2 in the introduction follows from Lemmas 3.2 and 3.3, and Theorem 3 in the introduction follows from Proposition 1.3 and Lemma 3.3.

Acknowledgements

I would like to thank Prof. Mislin, who pointed out an error in the first version of this note. The proof of Lemma 2.2 is suggested by Theorem 2.1 in [2]. I would also like to thank the referee for his (or her) valuable suggestions.

References

[1] S.A. Broughton, Classifying finite group actions on surfaces of low genus, J. Pure Appl. Algebra 69 (1991) 233-270.
[2] H.H. Glover, G. Mislin and S.N. Voon, The p-primary Farrell cohomology of OUT (F_{p-1}), preprint, 1995.
[3] H.H. Glover, G. Mislin and Y. Xia, On the Farrell cohomology of mapping class groups, Invent. Math. 109 (1992) 535-545.
[4] H.H. Glover, G. Mislin and Y. Xia, On the Yagita invariant of mapping class groups, Topology 33 (1994) 557574.
[5] C. MacLachlan and W.J. Harvey, On mapping class groups and Teichmüller spaces, Proc. London Math. Soc. 30 (1975) 496-512.
[6] J. Nielsen. Die Struktur periodischer Transformationen von Flächen, Danske Vid. Selsk. Mat.-Fys. Medd. 15 (1937) 1-77.
[7] C.B. Thomas, Free actions by p-groups on products of spheres and Yagita's invariants po(G), Lecturc Notes in Math. 1375 (1989) 326-338.
[8] Y. Xia, An obstruction in the mapping class group, Bull. London Math. Soc. 27 (1995) 51 57.
[9] N. Yagita, On the dimension of spheres whose product admits a free action by a non-abelian group. Quart. J. Math. Oxford 36 (1985) 117-127.

